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Variable-to-Fixed Length Codes are Better than 
Fixed-to-Variable Length Codes for Markov Sources 


JACOB ZIV, FELLOW, IEEE 


Abstract --It is demonstrated that for finite-alphabet, Kth order er- 
godic Markov Sources (i.e., memory of K letters), a variable-to-fixed 
code is better than the best fixed-to-variable code (Huffman code). It is 
shown how to construct a variable-to-fixed length code for a Kth order 
ergodic Markov source, which compresses more effectively than the best 
fixed-to-variable code (Huffman code). 


I. INTRODUCTION 


Consider the class of finite-alphabet, finite-order ergodic 
Markov sources, character ized by  a  probability distribution of 
the form 


(1) 


where 


P(x;lx;--‘) = P(x;Ix;~~), for any  i 2  K, 


and  where 


1) X/~Xj,Xi+,;..,Xj,i< j, 
2) X, is the output of the source at the ith instant, X, E A; 


IAI=a. 


A code is an  extended alphabet C of M vectors (“words”) 
Xi, X5,. . , X& where X; E A’(‘) and  where l(i) is the length of 
the vector Xf 


Assume also that any  vector x E A’ for 12  maxi I(i) has  a  
prefix XF EC for some 1  I i I M, and  that for every i and  
j(i #  j)XF E C is not a  prefix of Xg’ E C (i.e., the code is com- 
plete and  proper [l]). 


Every vector Xi E C is mapped  into a  unique binary sequence 
q  of length ,5(v) k L(i) binary letters. This sequence is called 
the “codeword” for the word XF. A fixed-to-variable length 
code (FVL) is one  for which 


l(i) =  1, 1lilM. (2) 
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A variable-to-fixed length code (VFL) is one  for which 


L(i) =  L, l<i_<M; 


L= [IogM] (3) 
where logarithms in this cor respondence are taken to be  of 
base  2. 


Consider the parsing of X = Xi’ into a  sequence of q,.(X) 
words of C (ignoring end-effects) 


x=x1,x2,x3 ,..., xj ,..., x~h(X), 
(4) 


where Xj E C, 1  5  j I q&X). Let 
q,(X) 


L,.(X)= C L(j), (5) 
]=I 


where L(j) is the length of Y’, the binary codeword that 
corresponds to the jth word in the parsed X. The  compression- 
ratio for a  given code C is def ined by  


pc  = lim 
EL,.(X) 


n+m nloga ’ (6) 


where Et.) denotes expectation. 
It is well known [2] that 


H 
PC.2 log 


and  that there exist a  sequence of FVL codes (Huffman codes)  
such that 


H 
lim pc = - A p(m) 


M+m log a  (8) 
where 


H= lim -iElogP(X). (9) n-m 
Unfortunately, for finite-order Markov sources with memory 
(K > 1) and  with p(m) < 1  we have  that 


p(M) b  min pc  > p(m) (10) 
where the minimization is carried over all codes with M code-  
words. 


In Theorem 1, we derive lower-bounds on  pc, for any  code 
such that the shortest word in C is no  shorter than K. Clearly, 
any  FVL code with more than aK codewords is included in this 
family of codes.  


In Theorem 2, we derive upper  bounds  on  p< for a  VFL code 
and  show that it approaches the lower bound  of Theorem 1, at 
least for sources with large memory (K >z 1). 


At the same time, the rate of approach of p<  for the best FVL 
code (i.e., Huffman code)  is slower than that of the VFL code.  
Thus, VFL coding takes better advantage of the source memory.  


II. DEKIVATIONS AND STATEMENT OF RESULTS 


The coding of a  sequence X was shown to be  associated with 
parsing the sequence into q,.(X) words. 


Each word is encoded  into one  out of A4 codewords of the 
given code C. The  selection of the particular codeword is 
independent  of the past words, without taking advantage of the 
memory of the source. Thus, when  encoding each  of the q,.(X) 
words in X, there is a  certain loss in compression. W e  show that 
the accumulated average loss for X is proport ional to the 
expected number  of words Eq,.(X), and  demonstrate that 
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Eq,.(X) for a variable-to-fixed code can be made smaller than Furthermore, for any X such that P(X) > 0, there exists a finite 
that of the best fixed-to-variable code (namely, Huffman code), number B such that 
for any Kth order Markov source (provided K Z+ 1). 


Theorem 1: For any code such that 


l(i) 2 K, i=1,2,3;..,M, also 


,im EL7<w H H 
-=-> 


H< - IK - log M - Ih’ ’ (11) 
n-c= n 


,og P( x’\x’-1) 
P( xi) 


IB<co, for all j, 


4<(X) I 1 - 51. 
n 


where Thus 


H,=-ElogP(Xj’)IlogM. 


Also 


Eqc(x) 1 1 
pc 1 lim ~ 


n--r= n log (y K = P(~) l- I,/H, 2 P(W) 1 - I, /log M . (14) 


(I21 The last step follows from the fact that . . X’, X2; . ., X’, . . 
is ergodic and therefore, with probability one, 


Proof: Assume that l(i) 2 K for all i, 15 i I M. lim ,,~,[l/q,(X)]~y~;y)logP(XJ’IX’~‘)/P(XI’)= Zk and since 


By (1) and by (4) l/max Z(i) 5 q&X)/n < 1. Similarly 


P(X’JX’,X2;.. ,x1-‘) =P(x’Ix’-1). (13) 


Thus, by (13) and since the original source is ergodic (i.e., 
aperiodic), we have that the probability measure of . . 
x1,x2 )...) 9 ,... is a first-order ergodic measure [2, p. 6.51. By 
ergodicity, by (11) and for any arbitrary small E, there exist an 


= ,,‘ew ;Eq?(X)H,. 


integer q. = q&E) such that for any q > q. Thus, by (91, and (14) 


$ $ L(Xj)-EL(XF) >E <E 
J 1 I 1 lim IEq,(X)H, - H = nlFE iEq,(X)I,. (15) 


IT’LL. n 


1 q 
Therefore 


- c -logP(X’)-H, >E <E 
4jz1 I 1 lim IEq,(X) = A. 


rl’33 II c K 


Now, for any given code C 


where the last result follows from the fact that since I(i) 2 K for 


EL,.(x) 
pc = lim ____ 


n-m nloga . 


all 1 I i 5 M But by (4) 


E,og VW-‘) 
= E log 


p( x:lx!!,) 


P( Xj) wc) . 


Now, since the length of every vector Xi is bounded by 
max, _<, s M I(i), there exists an integer n,, = n,,(e) such that for 


q,(X) 
l 


q.(X) L .c L(y’) 1-l 
n q,.(X) 


(16) 


any n > n,,, q,(X) > n,, /max f(i) and hence 


Pr 


and by the ergodicity which is implied by (13) and the arguments 
that led to the derivation of (14) 


pc = lim 
EL,(X) -= lim Eq,.(X) 


---EL( Xi’). (17) n--rm nlogol n+m nloga 


I I 
>E <e. 


However C is a uniquely decipherable prefix code. Thus by [2] 


EL(X:‘) > H,. 
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Therefore, for any code C, A Limit Theorem for n-Phase Barker Sequences 
NING ZHANG AND S. W. GOLOMB 


Inserting (16) into (18) yields 


2 P(m) 
log M 


!og M - ZK ’ (19) 


which completes the proof of Theorem 1. 0 


Theorem 2: For every M > cr /max{P(XjK)} there exists a VFL 
code with no more than M codeword such that 


PC 5 P(W) 
log M 


IogM-logcu-I,’ 


Proofi Construct a VFL code as follows. 


a) Start with the tree that consists of all aK words of 
length K. This tree has aK leaves. 


b) Extend each leaf by all possible single-letter extensions, 
provided that the word that is represented by this leaf 
has a probability that is larger than a/M. 


c) Repeat Step b) as many times as possible. 


Clearly there are no more than M codewords in the code 
tree..At the same time, by construction, no leaf has a probability 
that is larger than LY / M. Thus, 


H,= -ElogP(X:‘) 


2 log z = log M 
a 


Therefore, by (161, (171, and (21) 


- log(w. 


log M 
pC 5 lim 


Eq,(x) 1% M 
5 P(W) n+m nloga IogM-logcr-I, 


(21) 


0 


CONCLUSION 


It is clear from Theorem 1 and Theorem 2 that when ZK Z+ 
log (Y (i.e., K Z+ 11, pC for the VFL code of Theorem 2 ap- 
proaches the lower bound in Theorem 1, namely 


P,(VFL) = ~(~1 1 _ I 
K 


j/iog M. 


At the same time, we have for the best FVL code that 


P,WL) 2 P(W) 1 _ I1 ,H, 
K c 


and since H, < log M, its performance is inferior to that of the 
VFL code of Theorem 2. 
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Abstract-It is proven that for 3 I L I 19, except for L = 6, the total 
number of normalized n-phase Barker sequences of length L increases 
without limit, as n goes to infinitity. 


I. INTRODUCTION 


In [l], a generalized Barker sequence of length L is defined as 
an L-term sequence, a,,a2;“,aL, of complex numbers with 
lajl = 1 and /C(T)] I 1 for all j, 1 I j I L and all r, 1 I T I L - 1, 
where C(T) = C~:~aja*j+~. (H ere, z* denotes the complex con- 
jugate of z.) We call {a;) an n-phase Barker sequence, if each ai 
is an nth root of unity. 


Under the group of n-phase Barker-preserving transforma- 
tions, taking the lexicographically smallest representative of its 
equivalence class,’ we may assume that a, = a2 = 1 and a3 is in 
the upper half plane. Such a sequence is called a normalized 
Barker sequence. 


Definition: We let N,(n) denote the total number of normal- 
ized n-phase Barker sequences, of length L. 


In [2], we have proved that for all n 2 1, 


Here we shall prove that for 3 I L I 19, except for L = 6, 


lim NL(n) = +m. 
n++m 


II. LIMIT OF N,(n) (3 5 L 2 19 EXCEPT L = 6) 


From [I], we have the following two theorems. 


Theorem 1: The sum of two unit vectors lies within the unit 
circle if and only if the angle between those vectors is at least 
120” and at most 240”. 


Theorem 2: The sum of three unit vectors lies within the unit 
circle if and only if there is no semicircle properly containing all 
three vectors. 


Notation: In this section, we will use ((Y,,LY~;. ., a,) to de- 
note the Barker sequence (eiul,eraz; . ., e’“‘,), and we will use 
ajOak to denote the sum e’“] + eraA. The values of ‘Y~ are given 
in radians, unless the symbol for degrees -is used. 


Lemma 1: For any positive integer n 2 1, we have 


N,(n) = N,(n) = 1. 


Lemma 2: For any positive integer n 2 1, we have 


1) N,(n) = l(j: 2n 5 6j I 3n)l; 
2) lim n++J3(n)= +w 
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‘A group of n-phase Barker-preserving transformations: if (ai) is an n-phase 


Barker sequence of length L, so too are ((~7) and (rs’cr,) for all y and 6 with 
both y and 6 equal to nth roots of unity. 


Each term (I, can be regarded as a positive integer power of e’Zn’“. Hence 
n-phase Barker sequences correspond to L-tuples of integers. The “lexico- 
graphically smallest representative” refers to these corresponding L-tuples of 
integers. 
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